

Euro-Cares Work Package 5: Analogue Samples

Frances Westall¹, Jutta Zipfel², Frédéric Foucher¹, Caroline Smith³, John Bridges⁴, Luigi Folco⁵, John Brucato⁶, Andrea Meneghin, Ludovic Ferrière, Aurore Hutzler

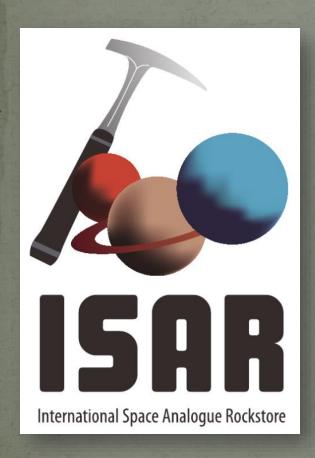
February 8, 2016
Paris, France

Analogue samples

Analogue samples are terrestrial samples presenting characteristics more or less representative of extra-terrestrial samples.

Analogue samples are used to:

- Test and calibrate instrumentation


- Help in situ interpretation

- Make science

- Also analogue sites

The International Space Analogue Rockstore

Bost et al., 2013, PSS 82-83, 113-127

A well characterized collection of analogue rocks and minerals dedicated to testing the payload for *in situ* missions.

An online database with information on:

- -the available samples,
- -the sample lending system,
- -data on the samples obtained using laboratory and space instruments.

www.isar.cnrs-orleans.fr

Soon, the collection will be transferred to the Natural History Museum of London under the responsibility of ESA.

Login frances

NEWS

CONTACT

Password

Not yet registered?

SAMPLES

Home

HOME

The International Space Analogue Rockstore (ISAR) is a collection of well-characterised rocks used for testing and calibrating instruments to be flown on space missions. The samples and their general characteristics are included in a database available for consultation via the link samples.

People directly involved in space science research can register to have access to a free sample lending system and the full data associated with each sample (.pdf and .xls files) after registration.

The ISAR in located in the Centre de Biophysique Moléculaire (CBM) of the CNRS in Orléans, in the framework of the Observatoire des Sciences de l'Univers en Région Centre (OSUC). It is supported by ESA and CNES.

2 cm

About ISAR

- » Home
- » Scientific team
- » Equipment
- » Lending system
- » Space missions
- » Classification system

Lastest News

Participation to EPSC 2014 in Cascais

Workshop Analogue report

Workshop Analogue SEE ALL

My selection

Contact us

Frances Westall, Frédéric Foucher, Centre de Biophysique Moléculaire, UPR CNRS 4301.

ESA-TN2:CAFÉ: The Catalogue of Planetary Analogues 2013

Louisa Preston, Monica Grady, Simeon Barber, OU, UK

i.e. Analogue sites

Planetary Body	Feature Class	Feature
Moon	Impact	Crater
		Ejecta
		Impact Melt
		Regolith
	Volcanic	Structure
		Lava Flows
		Pyroclastic Deposits
		Collapse Pits
		Wrinkle Ridges
		Rilles/Channel Systems
	Environmental	Granular Flows
	Composition	Anorthosite
		Basalt
		Impact Breccia
		Water/Ice

Mars	Impact Features	Crater	
		Ejecta	
		Melt Sheets	
		Hydrothermal Deposits	
		Gullies	
		Crater Lakes	
	Volcanic	Structure	
		Lava Flows	
		Lava Tubes	
		Pyroclastic Deposits	
		Collapse Pits	
		Wrinkle Ridges	
		Hydrothermal Deposits	
		Mud Volcanoes	
	Fluvial	Lakes	
		Channels	
		Deltas/Fans	
		Gullies	
	Wind	Soils/regolith	
		Dunes	
		Yardangs	
		Transverse Aeolian Ridges	
		Dust Devils	
	Ice	Polygon Terrain	
		Icy Flows/glacial features	
	Composition	Basalt	

Planning for Mars Returned Sample Science: Final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG)

A report requested by the Mars Exploration Program Analysis Group (MEPAG)

Nov. 22, 2011

Recommended bibliographic citation:

MEPAG E2E-iSAG (2011) Planning for Mars Returned Sample Science: Final report of the MSR Endto-End International Science Analysis Group (E2E-iSAG), 101 pp., posted December, 2011, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/.

E2E priority listinghighlighting different rock types//geological environments in order of importance to satisfy the scientific objectives of MSR missions

- 1A Subaqueous sediments or hydrothermal sediments
- 1B Hydrothermally and low-temperature fluid-altered rocks
- 2 Unaltered igneous rocks
- 3 Regolith
- 4 Atmosphere

EuroCares report:

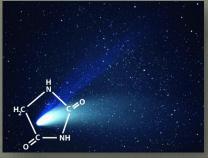
Table 1. Analogues and calibration samples sorted by nature, type and relevance.

Nature	Туре	Relevance	Example
	Site	Geology	Olivine rich sandy plains, Iceland (Mangold et al., 2011)
		Geomorphology	Mobility training in Utah desert, USA (Foing et al., 2011)
		Processes	Acidic alteration in Cyprus (Bost et al., 2013a)
		Mineralogy	Jarosite in Rio Tinto, Spain (Edwards et al., 2007)
		Astrobiology	Arsenic bacteria, Mono Lake, USA (Wolfe- Simon et al., 2010)
		Test and calibration	AMASE in Svalbard (Amundsen et al., 2010)
Natural	Geological sample	Geology	Impactite rocks
analogues		Mineralogy	Anorthosite (Moon analogue)
anaiogues		Cosmochemistry	Meteorites
			Rocks containing fossils of anaerobic
		Astrobiology	microorganisms (Westall et al., 2011)
		Test and calibration	Diamond
	Biological sample	Astrobiology	Extremophiles (Rothschilde and Mancinelli, 2002)
		Test and calibration	Various bacteria (Parro et al., 2008)
			Various bacteria
		Planetary protection	(http://planetaryprotection.nasa.gov/methods)
	Chemical		
	sample	Cosmochemistry	Organic compounds in meteorites

EuroCares report:

Table 1. Analogues and calibration samples sorted by nature, type and relevance.

		2	
Nature	Туре	Relevance	Example
			Lander touchdown and rover mobility
	Site	Test and calibration	(Richter et al., 2007)
	Cimarilation		Cometary analogue simulation chamber
	Simulation chamber	Cosmochemistry	(Danger et al., 2013)
		Test and calibration	Mars 500 experiment in ESA
			Artificially fossilized microorganisms
	Biological sample	Astrobiology	(Orange et al., 2009)
Simulated	Chemical sample		Analogue of tholins, Titan aerosols
		Cosmochemistry	(Carrasco et al., 2013)
analogues			Pigments for Raman spectroscopy (Vitek
		Astrobiology	et al., 2009)
		Test and calibration	Pure molecules
		Planetary protection	Biomolecules
	Material samples	Test and calibration	Colour target for cameras
			Gas to test airtightness of a sample return
		Handling and transportation	container
		Planetary protection	Resins used for space probes


Analogue samples

Analogue samples for Eurocares are terrestrial samples presenting compositional and physicotechnical characteristics that are relevant for sample handling, processing and staff training in a curation facility

Different types of analogue samples

- Materials used in in instruments used for taking samples and for storing them during a mission;
- Materials potentially in contact with the samples in the curation facility
- > Still to be determined in detail

For geology: rocks and minerals+ (including biosignature-containing rocks, ices and ice-organic mixtures.

For chemistry: molecules (PP)

For (astro-)biology: biological contaminants (PP).

Variety of samples

Dust, regolith

Volcanic rocks

Komatiite 10ZA09

Komatiite 11CA02

Slag 09IT01

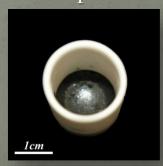
Aragonite 12FR02

Apatite 12UN05

Sedimentary rocks

-2 cm

Chert ooAUo4


Chert ooAUo5

Products of altered rocks

Carbonate 11CY04

Artificial samples

Basalt 11AR02

ANALOGUES WORKSHOP 4-5 FEBRUARY 2016

10 rocks, 14 minerals chosen because of their pertinance for :

- Composition/textural similarities with planetary materials;
- > Relevance for sample handling, processing, training
- > Contaminants
- ➤ N.B. Generic dust/regolith to be made up of mixtures of powdered basalt and minerals as needed (with addition of H2O ice for SPA Basin on the Moon)
- ➤ Use of powdered meteorite to represent asteroidal material (N.B. rare therefore to be used only in specific cases)

ANALOGUES WORKSHOP 4-5 FEBRUARY 2016

Rocks

Primitive basalt

Anorthosite

Dolerite

Tuff

Suevite impact breccia

Mudstone

Sulphate veins

(gypsum)

Sandstone

Silica, amorphous (opal)

Minerals

Jarosite

Goethite

Hematite

Ca-carbonate

Fe carbonate

Mg carbonate

Gypsum

Anhydrite

Perchlorates

Sulphides

Mg smectites

Illite

Chlorite

Ices

Contaminants

Rational for choices

		Mass	How			
Analogue		availabl	obtain		Indicative	Density
type	Location	e	able	Texture and Phys props	Density	Refs
				Glassy, fine-grained,		
Primitive	Aeolian			vesicular/non vesicular,	2600-2800	ESA
basalt	islands	lots	easy	fractured/unfractured	kg/km3	MREP doc

Indicative Strength(?)	Strength Refs	Relevance	Descriptive Hardness (Ref)
		Planetary	
		basalts	
		(shergottites)	HARD

ANALOGUES WORKSHOP 4-5 FEBRUARY 2016

Rocks

Primitive basalt

Anorthosite

Dolerite

Tuff

Suevite impact breccia

Mudstone

Sulphate veins

(gypsum)

Sandstone

Silica, amorphous (opal)

Minerals

Silicates (major rockforming mins) Jarosite

Hematite

Ca-carbonate

Fe carbonate

Mg carbonate

Gypsum

Anhydrite

Perchlorates

Sulphides

Mg smectites

Illite

Chlorite

Ices

Contaminants

Basalt from South Africa

Reference: **EuroCares-B1**

Target Bodies:

Target Geological Context:

Curation Facility Usage

- Testing/verifying curation equipment
- Testing/verifying protocols
- Testing/verifying processes
- Witness samples
- Standards for TBD instruments
- Component of artificial analogue recipe

Type of Analogue

- Rock
- Mineral
- Synthetic
- o Amorphous material

General geological Description

Petrography:

Altered silicified basalt

Mineralogy (for rock sample):

modal min i.e. 50% olivine, 40 % pyroxene, 10% plag, actinolite, oligoclase, quartz

Mineral type (for mineral sample):

N.A.

Chemistry:

Any bulk chemical analyses if available otherwise any information that is relevant e.g. Fe-rich or Ti-rich etc

Physical Properties

Density: TBD

Hardness/Compressive strength: TBD

Porosity measurement: TBD

Any other relevant physical properties data: TBD

Location

Africa/South Africa/Barberton/Komatii river, GPS: -26.035556, 30.998611

Links to other WPs

Further comments, information E.g. useful reference(s), any information you consider important

Perspectives

- Complete list (also with biological and chemical samples)
- Choose best analogues of each catagory/type of rock at next meeting (2 days between 18-20 May)
- Need specialists
- Iterate list with WP 4, 2
- > Final report